Repression of T-cell function by thionamides is mediated by inhibition of the activator protein-1/nuclear factor of activated T-cells pathway and is associated with a common structure.
نویسندگان
چکیده
Treatment of hyperthyroidism by thionamides is associated with immunomodulatory effects, but the mechanism of thionamide-induced immunosuppression is unclear. Here we show that thionamides directly inhibit interleukin-2 cytokine expression, proliferation, and the activation (CD69 expression) of primary human T lymphocytes. Inhibition of immune function was associated with a repression of DNA binding of the cooperatively acting immunoregulatory transcription factors activator protein 1 (AP-1) and nuclear factor of activated T-cells (NFAT). Likewise, thionamides block the GTPase p21Ras, the mitogen-activated protein kinases, and impair the calcineurin/calmodulin-dependent NFAT dephosphorylation and nuclear translocation. The potency of inhibition correlated with the chemical reactivity of the thionamide-associated sulfur group. Taken together, our data demonstrate that thio-derivates with a common heterocyclic thioureylene-structure mediate a direct suppression of immune functions in T-cells via inhibition of the AP-1/NFAT pathway. Our observations may also explain the clinical and pathological resolution of some secondary, calcineurin, and mitogen-activated protein kinase-associated diseases upon thionamide treatment in hyperthyroid patients. This offers a new therapeutic basis for the development and application of heterocyclic thio-derivates.
منابع مشابه
Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells
Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...
متن کاملThe Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملAltered Suppressor Function of Regulatory T Cells in Type 1 Diabetes
Background: Type 1 diabetes (T1D) is a T cell mediated autoimmune disease targeting the insulin-producing β cells within pancreatic islets. Autoimmune diseases may develop as a consequence of altered balance between regulatory (Tregs) and autoreactive T cells. Objectives: To evaluate Treg cells frequency and suppressive function in the peripheral blood of newly diagnosed T1D patients in compari...
متن کاملP 139: Curcumin anti-Inflammatory Effect in Neuroinflammatory Disorders: Prospective and Challenges
Curcumin is a hydrophobic polyphenol and major bioactive component of turmeric with known anti-inflammatory, neurogenesis, antioxidant, and anti-carcinogenic effect. Curcumin antagonizes many steps in the inflammatory cascade, including Inhibition of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), activator protein-1 transcription and iNOS (induced Nitric oxide syn...
متن کاملReview of NKG2D function and its related ligands: review article
The natural killer group 2D (NKG2D) is a transmembrane protein and a member of the CD94/NKG2 family of C-type lectin-like receptors. NKG2D is encoded by the KLRK1 gene, which is located in the NK-gene complex (NKC) placed on chromosomes 6 and 12 in mice and humans, respectively. NKG2D forms a homodimer structure and binds through ectodomains with its related ligands. Each of its monomers consis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 72 6 شماره
صفحات -
تاریخ انتشار 2007